Phylogenetic correlations have limited effect on coevolution-based contact prediction in proteins

Published: Aug. 13, 2020, 10:01 a.m.

Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.08.12.247577v1?rss=1 Authors: Rodriguez Horta, E., Weigt, M. Abstract: Coevolution-based contact prediction, either directly by coevolutionary couplings resulting from global statistical sequence models or using structural supervision and deep learning, has found widespread application in protein-structure prediction from sequence. However, one of the basic assumptions in global statistical modeling is that sequences form an at least approximately independent sample of an unknown probability distribution, which is to be learned from data. In the case of protein families, this assumption is obviously violated by phylogenetic relations between protein sequences. It has turned out to be notoriously difficult to take phylogenetic correlations into account in coevolutionary model learning. Here, we propose a complementary approach: we develop two strategies to randomize or resample sequence data, such that conservation patterns and phylogenetic relations are preserved, while intrinsic (i.e. structure- or function-based) coevolutionary couplings are removed. An analysis of these data shows that the strongest coevolutionary couplings, i.e. those used by Direct Coupling Analysis to predict contacts, are only weakly influenced by phylogeny. However, phylogeny-induced spurious couplings are of similar size to the bulk of coevolutionary couplings, and dissecting functional from phylogeny-induced couplings might lead to more accurate contact predictions in the range of intermediate-size couplings. Copy rights belong to original authors. Visit the link for more info