Computational prediction of SARS-CoV-2 encoded miRNAs and their putative host targets

Published: Nov. 3, 2020, 12:01 a.m.

Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.11.02.365049v1?rss=1 Authors: Verma, S., Dwivedy, A., Kumar, N., Biswal, B. K. Abstract: Background: Over the past two decades, there has been a continued research on the role of small non-coding RNAs including microRNAs (miRNAs) in various diseases. Studies have shown that viruses modulate the host cellular machinery and hijack its metabolic and immune signaling pathways by miRNA mediated gene silencing. Given the immensity of coronavirus disease 19 (COVID-19) pandemic and the strong association of viral encoded miRNAs with their pathogenesis, it is important to study Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) miRNAs. Results: To address this unexplored area, we identified 8 putative novel miRNAs from SARS-CoV-2 genome and explored their possible human gene targets. A significant proportion of these targets populated key immune and metabolic pathways such as MAPK signaling pathway, maturity-onset diabetes of the young, Insulin signaling pathway, endocytosis, RNA transport, TGF-{beta} signaling pathway, to name a few. The data from this work is backed up by recently reported high-throughput transcriptomics datasets obtains from SARS-CoV-2 infected samples. Analysis of these datasets reveal that a significant proportion of the target human genes were down-regulated upon SARS-CoV-2 infection. Conclusions: The current study brings to light probable host metabolic and immune pathways susceptible to viral miRNA mediated silencing in a SARS-CoV-2 infection, and discusses its effects on the host pathophysiology. Copy rights belong to original authors. Visit the link for more info