BIO-LGCA: a cellular automaton modelling class for analysing collective cell migration

Published: Oct. 29, 2020, 9:01 p.m.

Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.10.29.360669v1?rss=1 Authors: Deutsch, A., Nava-Sedeno, J. M., Syga, S., Hatzikirou, H. Abstract: Collective dynamics in multicellular systems such as biological organs and tissues plays a key role in biological development, regeneration, and pathological conditions. Collective dynamics - understood as population behaviour arising from the interplay of the constituting discrete cells - can be studied with mathematical models. Off- and on-lattice agent-based models allow to analyse the link between individual cell and collective behaviour. Notably, in on-lattice agent-based models known as cellular automata, collective behaviour can not only be analysed through computer simulations, but predicted with mathematical methods. However, classical cellular automaton models fail to replicate key aspects of collective migration, which is a central instance of collective behaviour in multicellular systems. To overcome drawbacks of classical on-lattice models, we introduce a novel on-lattice, agent-based modelling class for collective cell migration, which we call biological lattice-gas cellular automaton (BIO-LGCA). The BIO-LGCA is characterised by synchronous time updates, and the explicit consideration of individual cell velocities. While rules in classical cellular automata are typically chosen ad hoc, we demonstrate that rules for cell-cell and cell-environment interactions in the BIO-LGCA can also be derived from experimental single cell migration data or biophysical laws for individual cell migration. Furthermore, we present elementary BIO-LGCA models of fundamental cell interactions, which may be combined in a modular fashion to model complex multicellular phenomena. Finally, we present a mathematical mean-field analysis of a BIO-LGCA model that allows to predict collective patterns for a particular cell-cell interaction. Copy rights belong to original authors. Visit the link for more info