Modelling locust foraging: How and why food affects hopper band formation

Published: Sept. 21, 2020, 8:01 a.m.

Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.09.21.305896v1?rss=1 Authors: Georgiou, F. H., Buhl, J., Green, J. E. F., Lamichhane, B., Thamwattana, N. Abstract: Locust swarms are a major threat to agriculture, affecting every continent except Antarctica and impacting the lives of 1 in 10 people. Locusts are short horned grasshoppers that exhibit two behaviour types depending on their local population density. These are; solitarious, where they will actively avoid other locusts, and gregarious where they will seek them out. It is in this gregarious state that locusts can form massive and destructive flying swarms or plagues. However, these swarms are usually preceded by the formation of hopper bands by the juvenile wingless locust nymphs. It is thus important to understand the hopper band formation process to control locust outbreaks. On longer time-scales, environmental conditions such as rain events synchronize locust lifecycles and can lead to repeated outbreaks. On shorter time-scales, changes in resource distributions at both small and large spatial scales have an effect on locust gregarisation. It is these short time-scale locust-resource relationships and their effect on hopper band formation that are of interest. In this paper we investigate not only the effect of food on both the formation and characteristics of locust hopper bands but also a possible evolutionary explanation for gregarisation in this context. We do this by deriving a multi-population aggregation equation that includes non-local inter-individual interactions and local inter-individual and food interactions. By performing a series of numerical experiments we find that there exists an optimal food width for locust hopper band formation, and by looking at foraging efficiency within the model framework we uncover a possible evolutionary reason for gregarisation. Copy rights belong to original authors. Visit the link for more info