Hsf1 is SUMOylated in the activated trimeric state

Published: Oct. 5, 2020, 1:03 a.m.

Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.10.05.327064v1?rss=1 Authors: Kmiecik, S. W., Drzewicka, K., Melchior, F., Mayer, M. P. Abstract: The heat shock response (HSR) is a transcriptional program of organisms to counteract an imbalance in protein homeostasis. It is orchestrated in all eukaryotic cells by heat shock factor 1 (Hsf1). Despite very intensive research, the intricacies of the Hsf1 activation-attenuation cycle remain elusive at a molecular level. Posttranslational modifications belong to one of the key mechanisms proposed to adapt the Hsf1 activity to the needs of individual cells and phosphorylation of Hsf1 at multiple sites has attracted much attention. According to cell biological and proteomics data, Hsf1 is also modified by SUMO (small ubiquitin-like modifier) at several sites. How SUMOylation affects Hsf1 activity at a molecular level is still unclear. Here, we analyzed Hsf1 SUMOylation in vitro with purified components to address questions that could not be answered in cell culture models. In vitro Hsf1 is primarily conjugated at lysine 298 with a single SUMO, though we did detect low level SUMOylation at other sites. None of the tested E3 SUMO ligases increased SUMOylation efficacy as compared to the level in the presence of high concentrations of the E2 Ubc9. We provide evidence that Hsf1 trimerization and phosphorylation at serines 303 and 307 increases SUMOylation efficiency, suggesting that Hsf1 is SUMOylated in its activated state. Hsf1 can be SUMOylated when DNA-bound, and SUMOylation of Hsf1 does neither alter DNA binding affinity nor does it affect Hsc70 and DnaJB1-mediated monomerization of Hsf1 trimers and concomitant dislocation from DNA. We propose that SUMOylation acts at the transcription level of the HSR. Copy rights belong to original authors. Visit the link for more info