Heme oxygenase-1 affects cytochrome P450 function through the formation of heteromeric complexes: Interactions between CYP1A2 and heme oxygenase-1

Published: Sept. 14, 2020, 11:01 p.m.

Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.09.14.296467v1?rss=1 Authors: Connick, J. P., Reed, J. R., Cawley, G. F., Backes, W. L. Abstract: Heme oxygenase 1 (HO-1) and the cytochromes P450 (P450s) are endoplasmic reticulum-bound enzymes that rely on the same protein, NADPH-cytochrome P450 reductase (POR), to provide the electrons necessary for substrate metabolism. Although the HO-1 and P450 systems are interconnected due to their common electron donor, they generally have been studied separately. As the expression of both HO-1 and P450s are affected by xenobiotic exposure, changes in HO-1 expression can potentially affect P450 function, and conversely, changes in P450 expression can influence HO-1. The goal of this study was to examine interactions between the P450 and HO-1 systems. Using bioluminescence resonance energy transfer (BRET), HO-1 formed HO-1P450 complexes with CYP1A2, CYP1A1, and CYP2D6, but not all P450s. Studies then focused on the HO-1/CYP1A2 interaction. CYP1A2 formed a physical complex with HO-1 that was stable in the presence of POR. As expected, both HO-1 and CYP1A2 formed BRET-detectable complexes with POR. Whereas the PORCYP1A2 complex was readily disrupted by the addition of HO-1, the PORHO-1 complex was not significantly affected by the addition of CYP1A2. Interestingly, enzyme activities did not follow this pattern. Whereas BRET data suggested substantial inhibition of CYP1A2-mediated 7-ethoxyresorufin deethylation in the presence of HO-1, its activity was actually stimulated at subsaturating POR. In contrast, HO-1-mediated heme metabolism was inhibited at subsaturating POR. These results indicate that HO-1 and CYP1A2 form a stable complex and have mutual effects on the catalytic behavior of both proteins that cannot be explained by simple competition for POR. Copy rights belong to original authors. Visit the link for more info