Generation of an Unbiased Interactome for the Tetratricopeptide Repeat Domain of O-GlcNAc Transferase Indicates a Role for the Enzyme in Intellectual Disability

Published: July 30, 2020, 8:01 a.m.

Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.07.30.229930v1?rss=1 Authors: Stephen, H. M., Praissman, J. L., Wells, L. Abstract: The O-GlcNActransferase (OGT) is localized to the nucleus and cytoplasm where it regulates nucleocytoplasmic proteins by modifying serine and threonine residues with a non-extended monosaccharide, b-N-Acetyl-Glucosamine (O-GlcNAc). With thousands ofknown O-GlcNAcmodifiedproteinsbut only oneOGTencoded in the mammalian genome, a prevailing question is howOGTselects its substrates. Prior work has indicated that theN-terminaltetratricopeptide repeat (TPR) domain of OGT, rather than itsC-terminalcatalytic domain, is responsible forsubcellular targeting andsubstrate selection.An additional impetus for exploring the OGT TPR domain interactome is the fact that missense mutations inOGTassociated with X-linked intellectual disability (XLID) are primarily localized to the TPR domain without substantial impact on activity or stability of the enzyme.Therefore, we adapted theBioIDlabeling method to identify interactors of a TPR-BirA* fusion protein in HeLa cells. We identified 115high confidenceinteractors representing both known and novel O-GlcNAcmodified proteins and OGT interactors. The TPR interactors are highly enriched in processes in which OGT has a known role (e.g. chromatin remodeling, cellular survival of heat stress, circadian rhythm), as well as processesin which OGT has yet to be implicated (e.g. pre-mRNA processing). Importantly,the identified TPR interactors are involved in several disease states but most notably are highly enriched in pathologies featuring intellectual disability.Theseproteinsrepresent candidateinteractors that may underlie the mechanismby which mutations in OGT lead to XLID. Furthermore, the identified interactors provide additional evidence of the importance of the TPR domain for OGT targeting and/or substrate selection.Thus, this defined interactome for the TPR domain of OGT serves as ajumping off point for future researchexploringthe role of OGT, the TPR domain, and its protein interactorsin multiple cellular processes and disease mechanisms, including intellectual disability. Copy rights belong to original authors. Visit the link for more info