Non-linear massive gravity

Published: July 15, 2013, 11 a.m.

b'Massive gravity is a particular theoretical model that modifies gravity on cosmological scales and therefore could provide a dynamical explanation for the observed accelerated expansion of our Universe. In this thesis we investigate various theoretical problems of massive gravity, important for its consistency and phenomenological viability. It is known that the predictions from the linearized massive gravity contradict the predictions of General Relativity. It is, however, an artifact due to the breakdown of the perturbative expansion in the massless limit. In our work we investigate this problem in the diffeomorphism invariant formulation of massive gravity in which the graviton mass term is written in terms of four scalar fields. We determine the so-called Vainshtein scale below which the scalar modes of the massive graviton enter the non-perturbative regime for a wide class of non-linear mass terms. We find the asymptotic solutions of the spherically symmetric gravitational field below and above the Vainshtein radius, and show that massive gravity goes smoothly to the General Relativity below this scale. We also determine the corresponding corrections to the Newton potential. In general, any non-linear extension of the quadratic graviton mass term propagates the Boulware-Deser ghost. The only theory in which the ghost is not propagating in the high energy decoupling limit, is the de Rham-Gabadadze-Tolley theory. Here we show that the ghost arises in the fourth order of perturbations in this theory away from the decoupling limit. However, we further argue that the ghost can be avoided in the full non-linear theory if not all four scalar fields propagate independent degrees of freedom. In particular, we investigate the simple example of (1+1)-dimensional massive gravity and find that the theory exhibits a gauge symmetry, which reduces the number of degrees of freedom. We also generalize the diffeomorphism invariant formalism of massive gravity to arbitrary curved backgrounds. We find that, given a specific background metric, the resulting generally covariant massive gravity exhibits an internal symmetry in the configuration space of the scalar fields. The symmetry transformations of the scalar fields are given by the isometries of the reference metric. In particular, we investigate massive gravity on de Sitter space in this formalism. We confirm the known result that, in the case when the graviton mass is related to the cosmological constant as m^2=2\\\\Lambda/3, the theory is partially massless and propagates only four degrees of freedom.'