Einfluss eines Carboanhydrase XII-spezifischen Antikörpers auf das Tumorwachstum in vitro und in vivo sowie Onkosomen-basierte Generierung neuer tumorreaktiver Antikörper

Published: Oct. 14, 2013, 11 a.m.

In dieser Arbeit wurden Mikrovesikel, die von Tumor-Zelllinien in hohen Konzentrationen sekretiert wurden, zur Immunisierung von Ratten verwendet, um auf diese Weise monoklonale Anti-körper gegen membranständige Proteine zu generieren, die auf Tumorzellen vorhanden sind. Der Grund für diesen Ansatz ist, dass Mikrovesikel verschiedenste Membranproteine enthalten, die in Tumorzellen in hohem Maße exprimiert werden. Diese Mikrovesikel sind etwa hundertfach kleiner als die Zellen, denen sie entstammen und daher deutlich weniger komplex. Gleich-zeitig enthalten sie aber überproportional viele Membran-proteine. Viele, aber nicht alle dieser Proteine sind in der Onko-logie und Tumorimmunologie bereits als Tumor-assoziierte Antigene bekannt, weshalb diese Mikrovesikel hier als Onko-somen bezeichnet werden. Es hat sich herausgestellt, dass sich Onkosomen hervorragend zur Immunisierung verwenden lassen und durch ihre Immunogenität die Möglichkeit bieten, mono-klonale Antikörper gegen zunächst unbekannte, aber onko-logisch relevante Membranproteine zu generieren. Aus solchen Immunisierungen war in der Arbeitsgruppe der Antikörper 6A10 hervorgegangen, der mit hoher Spezifität und Effizienz die Tumor-assoziierte Carboanhydrase XII (CA XII) er-kennt und inhibiert. CA XII ist ein membranständiges Enzym, das auf einer Vielzahl hypoxischer Tumoren exprimiert ist und für die Homöostase des leicht alkalischen intrazellulären pH-Wertes vieler Tumorzellen entscheidend ist. Mit dem inhibitorischen Antikörper 6A10 konnte ich in dieser Arbeit zeigen, dass eine spezifische Hemmung der CA XII-Enzymaktivität zu einem ver-zögerten Wachstum dreidimensionaler Tumorzellverbände in vitro und in vivo führt. Bei den in-vivo-Versuchen konnte ich dabei das Wachstum von Luziferase-exprimierenden Tumoren in immundefekten NSG-Mäusen durch Biolumineszenz-basierte Bildgebung (BLI) über lange Zeiträume exakt verfolgen und quantifizieren. Mittels Fluoreszenz-basierter Bildgebung konnte ich zudem die spezifische Bindung eines 6A10-Infrarotfarbstoff-Konjugates an Tumorzellen in vivo visualisieren. Da es zuvor keinen spezifischen Inhibitor gegen die CA XII gab, waren dies die ersten Untersuchungen, die speziell die CA XII als Ziel-struktur behandelten und für die klinische Onkologie als relevantes Tumor-assoziiertes Antigen validieren konnten. In einem zweiten Teil meiner Arbeit ermittelte ich die Spezifität weiterer Tumor-reaktiver Antikörper, die aus Immunisierungen mit Onkosomen hervorgegangen sind. Diese Antikörper erkann-ten nativ gefaltete Antigene auf der Oberfläche von Tumorzellen und könnten zur Beantwortung verschiedener onkologischer Fragestellungen Verwendung finden. Neben dieser unspezi-fischen „reversen“ Immunisierungsmethode, verwendete ich Onkosomen erfolgreich auch zur gezielten Generierung von Antikörpern gegen ein definiertes membranständiges Protein, die humane Carboanhydrase IX. Die CA IX ist ein weiteres be-kanntes membranständiges Tumor-assoziiertes Antigen, das oft mit der Carboanhydrase XII auf invasiven soliden Tumoren ko-exprimiert ist. Damit konnte ich belegen, dass sich Mikrovesikel nicht nur für die Generierung neuartiger Tumor-reaktiver Anti-körper, sondern auch für die Entwicklung von Antikörpern gegen ein Molekül der Wahl eignen. Die Immunisierung mit nativ ge-falteten Proteinen im Kontext immunogener Mikrovesikel könnte sich zukünftig als Möglichkeit zur Generierung von Antikörpern erweisen, die mit klassischen Immunisierungsmethode nicht oder nur schwer zu erhalten sind.