Towards Reproducible Brain-Wide Association Studies

Published: Aug. 22, 2020, 10 a.m.

Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.08.21.257758v1?rss=1 Authors: Marek, S., Tervo-Clemmens, B., Calabro, F. J., Montez, D. F., Kay, B. P., Hatoum, A. S., Donohue, M. R., Foran, W., Miller, R. L., Feczko, E., Miranda Dominguez, O., Graham, A., Earl, E. A., Perrone, A., Cordova, M., Doyle, O., Moore, L. A., Conan, G., Uriarte, J., Snider, K., Tam, A., Chen, J., Newbold, D. J., Zheng, A., Seider, N. A., Van, A. N., Laumann, T. O., Thompson, W. K., Greene, D. J., Petersen, S. E., Nichols, T., Yeo, B. T. T., Barch, D. M., Garavan, H., Luna, B., Fair, D. A., Dosenbach, N. U. F. Abstract: Magnetic resonance imaging (MRI) continues to drive many important neuroscientific advances. However, progress in uncovering reproducible associations between individual differences in brain structure/function and behavioral phenotypes (e.g., cognition, mental health) may have been undermined by typical neuroimaging sample sizes (median N=25)1,2. Leveraging the Adolescent Brain Cognitive Development (ABCD) Study3 (N=11,878), we estimated the effect sizes and reproducibility of these brain wide associations studies (BWAS) as a function of sample size. The very largest, replicable brain wide associations for univariate and multivariate methods were r=0.14 and r=0.34, respectively. In smaller samples, typical for brain wide association studies, irreproducible, inflated effect sizes were ubiquitous, no matter the method (univariate, multivariate). Until sample sizes started to approach consortium levels, BWAS were underpowered and statistical errors assured. Multiple factors contribute to replication failures4,5,6; here, we show that the pairing of small brain behavioral phenotype effect sizes with sampling variability is a key element in widespread BWAS replication failure. Brain behavioral phenotype associations stabilize and become more reproducible with sample sizes of N>2,000. While investigator initiated brain behavior research continues to generate hypotheses and propel innovation, large consortia are needed to usher in a new era of reproducible human brain wide association studies. Copy rights belong to original authors. Visit the link for more info