Modeling robust and efficient coding in the mouse primary visual cortex using computational perturbations

Published: March 29, 2021, 1:03 a.m.

Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.04.21.051268v1?rss=1 Authors: Cai, B., Billeh, Y. N., Chettih, S. N., Harvey, C., Koch, C., Arkhipov, A., Mihalas, S. Abstract: Investigating how visual inputs are encoded in visual cortex is important for elucidating the roles of cell populations in circuit computations. We here use a recently developed, large-scale model of mouse primary visual cortex (V1) and perturb both single neurons as well as functional- and cell-type defined population of neurons to mimic equivalent optogenetic perturbations. First, perturbations were performed to study the functional roles of layer 2/3 excitatory neurons in inter-laminar interactions. We observed activity changes consistent with the canonical cortical model (Douglas and Martin 1991). Second, single neuron perturbations in layer 2/3 revealed a center-surround inhibition-dominated effect, consistent with recent experiments. Finally, perturbations of multiple excitatory layer 2/3 neurons during visual stimuli of varying contrasts indicated that the V1 model has both efficient and robust coding features. The circuit transitions from predominantly broad like-to-like inhibition at high contrasts to predominantly specific like-to-like excitation at low contrasts. These in silico results demonstrate how the circuit can shift from redundancy reduction to robust codes as a function of stimulus contrast. Copy rights belong to original authors. Visit the link for more info