Estimating Transfer Entropy in Continuous Time Between Neural Spike Trains or Other Event-Based Data

Published: June 16, 2020, 8 a.m.

Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.06.16.154377v1?rss=1 Authors: Shorten, D., Spinney, R., Lizier, J. Abstract: Transfer entropy (TE) is a widely used measure of directed information flows in a number of domains including neuroscience. Many real-world time series in which we are interested in information flows come in the form of (near) instantaneous events occurring over time, including the spiking of biological neurons, trades on stock markets and posts to social media. However, there exist severe limitations to the current approach to TE estimation on such event-based data via discretising the time series into time bins: it is not consistent, has high bias, converges slowly and cannot simultaneously capture relationships that occur with very fine time precision as well as those that occur over long time intervals. Building on recent work which derived a theoretical framework for TE in continuous time, we present an estimation framework for TE on event- based data and develop a k-nearest-neighbours estimator within this framework. This estimator is provably consistent, has favourable bias properties and converges orders of magnitude more quickly than the discrete-time estimator on synthetic examples. We also develop a local permutation scheme for generating null surrogate time series to test for the statistical significance of the TE and, as such, test for the conditional independence between the history of one point process and the updates of another -- signifying the lack of a causal connection under certain weak assumptions. Our approach is capable of detecting conditional independence or otherwise even in the presence of strong pairwise time-directed correlations. The power of this approach is further demonstrated on the inference of the connectivity of biophysical models of a spiking neural circuit inspired by the pyloric circuit of the crustacean stomatogastric ganglion, succeeding where previous related estimators have failed. Copy rights belong to original authors. Visit the link for more info