BDNFTrkB signaling endosomes mediate long-distance dendritic growth by activating CREBPI3K-mTOR-dependent translation in neuronal cell bodies.

Published: Aug. 24, 2020, 5:01 a.m.

Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.08.22.262923v1?rss=1 Authors: Bronfman, F. C., Moya-Alvarado, G. Abstract: Brain-Derived Neurotrophic Factor (BDNF) is broadly expressed in many circuits of the central nervous system (CNS). It binds TrkB and p75 to trigger different signaling pathways, including ERK1/2 and PI3K-mTOR, to induce dendritic growth and synaptic plasticity. When binding to BDNF, TrkB and p75 are endocytosed to signaling endosomes to continue signaling inside the cell. Whether BDNF/TrkB-p75 signaling endosomes in axons are regulating long-distance signaling in cell bodies to modify neuronal morphology is unknown. Here, we studied the functional role of BDNF signaling endosomes in long-distance regulation of dendritic growth using compartmentalized cultures of rat and mouse cortical neurons derived from p75exonIII knock-out or TrkBF616A knock-in mice. By applying BDNF to distal axons, we showed the capacity of axonal BDNF to increase dendritic arborization in cell bodies. This process depended on TrkB activity, but not p75 expression. In axons, BDNF/TrkB co-localized with Rab5 endosomes and increased active Rab5. Also, dynein was required for BDNF long-distance signaling, consistent with sorting and transport of signaling endosomes. Using neurons derived from TrkBF616A knock-in mice and the 1NM-PP1 inhibitor, we were able to demonstrate that TrkB receptors activated in the axons by BDNF, were required in the neuronal cell body to increase TrkB activity and phosphorylation of CREB. Also, we were able to visualize endosomes containing activated TrkB. PI3K activity was not required in the axons for dynein dependent BDNF responses. However, dendritic arborization induced by axonal BDNF signaling required both nuclear CREB and PI3K activation in cell bodies. Consistently, axonal BDNF increased protein translation in cell bodies and CREB and PI3K and mTOR activity were required for this process. Altogether, these results show that BDNF/TrkB signaling endosomes generated in axons allows long-distance control of dendritic growth coordinating both transcription and protein translation. Our results suggest a role of BDNF-TrkB signaling endosomes wiring circuits in the CNS. Copy rights belong to original authors. Visit the link for more info