AutonomicCentral Coupling Boosts Working Memory in Healthy Young Adults

Published: March 29, 2021, 1:03 a.m.

Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.04.22.056481v1?rss=1 Authors: Chen, P.-C., Whitehurst, L. N., Naji, M., Mednick, S. C. Abstract: Working memory (WM) is an executive function that can improve with training. However, the precise mechanism for this improvement is not known. Studies have shown greater WM gains after a period of sleep than a similar period of wake (Kuriyama et al. 2008a; Zinke, Noack, and Born 2018), with WM improvement correlated with slow wave activity (SWA; 0.5-1Hz) during slow wave sleep (SWS) (Sattari et al. 2019; Pugin et al. 2015; Ferrarelli et al. 2019). A different body of literature has suggested an important role for autonomic activity during wake for WM (Hansen et al. 2004; Mosley, Laborde, and Kavanagh 2018). A recent study from our group reported that the temporal coupling of autonomic and central events (ACEs) during sleep was associated with memory consolidation (Naji et al. 2019). We found that heart rate bursts (HR bursts) during non-rapid eye movement (NREM) sleep are accompanied by increases in SWA and sigma (12-15Hz) power, as well as increases in the high-frequency (HF) component of the RR interval, reflecting vagal rebound. In addition, ACEs predict long-term, episodic memory improvement. Building on these previous results, we examined whether ACEs may also contribute to gains in WM. We tested 104 young adults in an operation span task (OSPAN) in the morning and evening, with either a nap (with electroencephalography (EEG) and electrocardiography (ECG)) or wake between testing sessions. We identified HR bursts in the ECG and replicated the increases in SWA and sigma prior to peak of the HR burst, as well as vagal rebound after the peak. Furthermore, we showed sleep-dependent WM improvement, which was predicted by ACE activity. Using regression analyses, we discovered that significantly more variance in WM improvement could be explained with ACE variables than with overall sleep activity not time-locked with ECG. These results provide the first evidence that coordinated autonomic and central events play a significant role in sleep-related WM improvement and implicate the potential of autonomic interventions during sleep for cognitive enhancement. Copy rights belong to original authors. Visit the link for more info