A calcium-based plasticity model predicts long-term potentiation and depression in the neocortex

Published: March 29, 2021, 1:03 a.m.

Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.04.19.043117v1?rss=1 Authors: Chindemi, G., Abdellah, M., Amsalem, O., Benavides-Piccione, R., Delattre, V., Doron, M., Ecker, A., King, J. G., Kumbhar, P., Monney, C. C., Perin, R., Rössert, C., Van Geit, W., DeFelipe, J., Graupner, M., Segev, I., Markram, H., Müller, E. B. Abstract: Long-term potentiation (LTP) and long-term depression (LTD) of pyramidal cell connections are among the key mechanisms underlying learning and memory in the brain. Despite their important role, only a few of these connections have been characterized in terms of LTP/LTD dynamics, such as the one between layer 5 thick-tufted pyramidal cells (L5-TTPCs). Comparing the available evidence on different pyramidal connection types reveals a large variability of experimental outcomes, possibly indicating the presence of connection-type-specific mechanisms. Here, we show that a calcium-based plasticity rule regulating L5-TTPC synapses holds also for several other pyramidal-to-pyramidal connections in a digital model of neocortical tissue. In particular, we show that synaptic physiology, cell morphology and innervation patterns jointly determine LTP/LTD dynamics without requiring a different model or parameter set for each connection type. We therefore propose that a similar set of plasticity mechanisms is shared by seemingly very different neocortical connections and that only a small number of targeted experiments is required for generating a complete map of synaptic plasticity dynamics int he neocortex. Copy rights belong to original authors. Visit the link for more info