Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.08.25.267195v1?rss=1 Authors: Gagne, D., Azad, R., Edupuganti, U. R., Williams, J., Aramini, J. M., Akasaka, K., Gardner, K. H. Abstract: Small molecule binding within internal cavities provides a way to control protein function and structure, as exhibited in numerous natural and artificial settings. Unfortunately, most ways to identify suitable cavities require high-resolution structures a priori and may miss potential cryptic sites. Here we address this limitation via high-pressure solution NMR spectroscopy, taking advantage of the distinctive nonlinear pressure-induced chemical shift changes observed in proteins containing internal cavities and voids. We developed a method to rapidly characterize such nonlinearity among backbone 1H and 15N amide signals without needing to have sequence-specific chemical shift assignments, taking advantage of routinely available 15N-labeled samples, instrumentation, and 2D 1H/15N HSQC experiments. From such data, we find a strong correlation in the site-to-site variability in such nonlinearity with the total void volume within proteins, providing insights useful for prioritizing domains for ligand binding and indicating mode-of-action among such protein/ligand systems. We suggest that this approach provides a rapid and useful way to rapidly assess otherwise hidden dynamic architectures of protein that reflect fundamental properties associated with ligand binding and control. Copy rights belong to original authors. Visit the link for more info