The mechanism of motor inhibition by microtubule-associated proteins

Published: Oct. 23, 2020, 10:02 p.m.

Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.10.22.351346v1?rss=1 Authors: Ferro, L. S., Eshun-Wilson, L., Golcuk, M., Fernandes, J., Huijben, T., Gerber, E., Jack, A., Costa, K., Gur, M., Feng, Q., Nogales, E., Yildiz, A. Abstract: Microtubule (MT)-associated proteins (MAPs) regulate intracellular transport by selectively recruiting or excluding kinesin and dynein motors from MTs. We used single-molecule and cryo-electron imaging to determine the mechanism of MAP-motor interactions in vitro. Unexpectedly, we found that the regulatory role of a MAP cannot be predicted based on whether it overlaps with the motor binding site or forms liquid condensates on the MT. Although the MT binding domain (MTBD) of MAP7 overlaps with the kinesin-1 binding site, tethering of kinesin-1 by the MAP7 projection domain supersedes this inhibition and results in biphasic regulation of kinesin-1 motility. Conversely, the MTBD of tau inhibits dynein motility without overlapping with the dynein binding site or by forming tau islands on the MT. Our results indicate that MAPs sort intracellular cargos moving in both directions, as neither dynein nor kinesin can walk on a MAP-coated MT without favorably interacting with that MAP. Copy rights belong to original authors. Visit the link for more info