In silico prediction of COVID-19 test efficiency with DinoKnot

Published: Sept. 11, 2020, 8:01 a.m.

Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.09.11.292730v1?rss=1 Authors: Newman, T., Chang, H. F. K., Jabbari, H. Abstract: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus spreading across the world causing the disease COVID-19. The diagnosis of COVID-19 is done by quantitative reverse-transcription polymer chain reaction (qRT-PCR) testing which utilizes different primer-probe sets depending on the assay used. Using in silico analysis we aimed to determine how the secondary structure of the SARS-CoV-2 RNA genome affects the interaction between the reverse primer during qRT-PCR and how it relates to the experimental primer-probe test efficiencies. We introduce the program DinoKnot (Duplex Interaction of Nucleic acids with pseudoKnots) that follows the hierarchical folding hypothesis to predict the secondary structure of two interacting nucleic acid strands (DNA/RNA) of similar or different type. DinoKnot is the first program that utilizes stable stems in both strands as a guide to find the structure of their interaction. Using DinoKnot we predicted the interaction of the reverse primers used in four common COVID-19 qRT-PCR tests with the SARS-CoV-2 RNA genome. In addition, we predicted how 12 mutations in the primer/probe binding region may affect the primer/probe ability and subsequent SARS-CoV-2 detection. While we found all reverse primers are capable of interacting with their target area, we identified partial mismatching between the SARS-CoV-2 genome and some reverse primers. We predicted three mutations that may prevent primer binding, reducing the ability for SARS-CoV-2 detection. We believe our contributions can aid in the design of a more sensitive SARS-CoV-2 test. Copy rights belong to original authors. Visit the link for more info