Zerstäubung

Published: Dec. 14, 2017, 8:30 p.m.

Corina Schwitzke ist Gruppenleiterin im Institut für thermische Strömungsmaschinen (ITS) am KIT. Gudrun wollte gern ein Gespräch über partikelbehaftete Strömungen mit ihr führen, denn dies ist ein wichtiges Thema in beiden Arbeitsgruppen. In Corinas Institut gilt das Interesse vor allem der Zerstäubung von Kerosin zu feinen Tröpfchen in Flugtriebwerken Seit 10 Jahren gibt es dort Strömungssimulation mit einer sogenannten Partikelmethode. Die Partikel in dieser Anwendung sind Stützstellen der Rechenmethode und repräsentieren die Flüssigkeit, z.B. Kerosin, und das Gas, d.h. die verdichtete Luft. Vom Blickpunkt der Simulation aus sind die Partikel eigentlich nur Diskretisierungspunkte, die sich mit der Strömung mitbewegen. Sie repräsentieren dabei ein Volumen und die benutzten Koordinaten "schwimmen" mit dem Fluid, d.h. die Methode benutzt ein Lagrange-Koordinatensystem. Die Gleichungen, die der Simulation zugrunde liegen, sind die Navier-Stokes Gleichungen - zunächst isotherm. Falls die Temperaturänderung mitbetrachtet werden muss, dann erfolgt das durch das Lösen der Energiegleichung, für die die diskrete Fassung sehr einfach zu realisieren ist. Das für den Zerstäubungsprozess gut geeignete numerische Verfahren, das am ITS umgesetzt wurde (und dort auch noch weiter entwickelt wird) ist Smoothed particle Hydrodynamics (SPH). Die Methode wurde zu Beginn der 1970er Jahre für die Simulation von Galaxie-Entstehung entwickelt. Ein großer Vorteil ist, dass das Verfahren sich extrem gut parallel implementieren läßt und die Simulation Gebiete ausspart, wo zunächst nichts passiert. Außerdem ist es einfacher, die Physik des Tröpfchenzerfalls zu modellieren als mit den klassischen kontinuumsmechanischen Ansätzen. Der wichtigste Aspekt für die Simulation der Kraftstoffzerstäubung ist die Oberflächenspannung. Sie muss physikalisch und numerisch richtig beschrieben werden und führt dann dazu dass ein Flüssigkeitsfilm in Tropfen zerfällt. Hier geht das Wissen um Oberflächenspannungskoeffizienten ein, die aus Experimenten gewonnen werden ebenso wie die erwartbaren Kontaktwinkel an Wänden. Das Kräftegleichgewicht von angreifenden Scher- und Oberflächenkräften muss die modellierende Physik abbilden - die numerischen Partikel bekommen daraus direkt eine Geschwindigkeit zugewiesen, die auch ausdrückt, ob der Film reißt oder zusammenhängend bleibt. Diese Partikelmethode vermeidet die Probleme von gitterbasierten Verfahren beim Reißen des Films, denn Grenzflächen werden automatisch mittransportiert. Durch die gut skalierende parallele Implementierung ist es möglich, mit einigen Milliarden Partikeln zu rechnen. Die Ergebnisse der Simulationen haben vielfältige Anwendungen. Eine ist es Schadstoffemission zu minimieren. Das ist möglich durch erzwingen der vollständigen Verbrennung des Kraftstoffes oder durch die Vermeidung der Entstehung von Stick- und Schwefeloxiden im Prozess. Das kann durch die Kraftstoffverteilung und über die Temperaturniveaus gesteuert werden. (...)