Transcranial Random Noise Stimulation acutely lowers the response threshold of human motor circuits

Published: Oct. 9, 2020, 7:01 p.m.

Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.10.07.329813v1?rss=1 Authors: Potok, W., Baechinger, M., Cretu, A. L., van der Groen, O., Wenderoth, N. Abstract: Transcranial random noise stimulation (tRNS) over cortical areas has been shown to acutely improve performance in sensory detection tasks. One explanation for this behavioural effect is stochastic resonance, a mechanism that explains how signal processing in non-linear systems can benefit from added noise. While acute noise benefits of electrical random noise stimulation have been demonstrated at the behavioural level as well as in in vitro preparations of neural tissue, it is currently largely unknown whether similar effects can be shown at the neural population level using neurophysiological readouts of human cortex. Here we hypothesized that acute tRNS will increase the responsiveness of primary motor cortex (M1) when probed with transcranial magnetic stimulation. Neural responsiveness was operationalized via the well-known concept of the resting motor threshold (RMT). We showed that tRNS acutely decreases RMT. This effect was relatively small, but it was consistently replicated across four experiments including different cohorts (total N=81), two tRNS electrode montages, and different control conditions. Our experiments provide critical neurophysiological evidence that tRNS can acutely generate noise benefits by enhancing the neural population response of human M1. These new findings complement previous behavioural research which proposed that noise induced via tRNS can beneficially modulate neural processing. Copy rights belong to original authors. Visit the link for more info