Regulation of olfactory associative memory by the circadian clock output signal Pigment-dispersing factor (PDF)

Published: March 29, 2021, 1:03 a.m.

Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.04.17.046953v1?rss=1 Authors: Flyer-Adams, J. G., Rivera-Rodriguez, E. J., Mardovin, J., Yu, J., Griffith, L. C. Abstract: Dissociation between the output of the circadian clock and external environmental cues is a major cause of human cognitive dysfunction. While the effects of ablation of the molecular clock on memory have been studied in many systems, little has been done to test the role of specific clock circuit output signals. To address this gap, we examined the effects of mutation of Pigment-dispersing factor (Pdf) and its receptor, Pdfr on associative memory in male and female Drosophila. Loss of PDF signaling significantly decreases the ability to form associative memory. Appetitive short-term memory (STM), which in wildtype is time-of-day (TOD)-independent, is decreased across the day by mutation of Pdf or Pdfr, but more substantially in the morning than in the evening. This defect is due to PDFR expression in adult neurons outside the core clock circuit and the mushroom body Kenyon cells. The acquisition of a TOD difference in mutants implies the existence of multiple oscillators that act to normalize memory formation across the day for appetitive processes. Interestingly, aversive STM requires PDF but not PDFR, suggesting that there are valence-specific pathways downstream of PDF that regulate memory formation. These data argue that the circadian clock uses circuit-specific and molecularly diverse output pathways to enhance the ability of animals to optimize responses to changing conditions. Copy rights belong to original authors. Visit the link for more info