Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.07.27.223446v1?rss=1 Authors: Leitner, D. F., Mills, J. D., Pires, G., Faustin, A., Drummond, E., Kanshin, E., Nayak, S., Askenazi, M., Verducci, C., Chen, B. J., Janitz, M., Anink, J. J., Baayen, J. C., Idema, S., van Vliet, E. A., Devore, S., Friedman, D., Diehl, B. V., Scott, C., Thijs, R., Wisniewski, T., Ueberheide, B., Thom, M., Aronica, E., Devinsky, O. Abstract: Sudden unexpected death in epilepsy (SUDEP) is the leading type of epilepsy-related death. Severely depressed brain activity in these cases may impair respiration, arousal, and protective reflexes, occurring as a prolonged postictal generalized EEG suppression (PGES) and resulting in a high-risk for SUDEP. In autopsy hippocampus and cortex, we observed no proteomic differences between SUDEP and epilepsy cases, contrasting our previously reported robust differences between epilepsy and controls. Transcriptomics in hippocampus and cortex from surgical epilepsy cases segregated by PGES identified 55 differentially expressed genes (37 protein-coding, 15 lncRNAs, three pending) in hippocampus. Overall, the SUDEP proteome and high-risk SUDEP transcriptome largely reflected other epilepsy cases in the brain regions analyzed, consistent with diverse epilepsy syndromes and comorbidities associated with SUDEP. Thus, studies with larger cohorts and different epilepsy syndromes, as well as additional anatomic regions may identify molecular mechanisms of SUDEP. Copy rights belong to original authors. Visit the link for more info