Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.05.12.091678v1?rss=1 Authors: Lau, B. K., Ambrose, B. P., Thomas, C. S., Qiao, M., Borgland, S. L. Abstract: The orbitofrontal cortex (OFC) plays a critical role in evaluating outcomes in a changing environment. Administering opioids to the OFC can alter the hedonic reaction to food rewards and increase their consumption in a subregion specific manner. However, it is unknown how mu-opioid signalling influences synaptic transmission in the OFC. Thus, we investigated the cellular actions of mu-opioids within distinct subregions of the OFC. Using in-vitro patch clamp electrophysiology in brain slices containing the OFC, we found that the mu-opioid agonist, DAMGO produced a concentration-dependant inhibition of GABAergic synaptic transmission onto medial OFC (mOFC), but not lateral OFC (lOFC) neurons. This effect was mediated by presynaptic mu-opioid receptor activation of local parvalbumin (PV+)-expressing interneurons. The DAMGO-induced suppression of inhibition was long-lasting and not reversed upon washout or by application of the mu-opioid receptor antagonist, CTAP, suggesting an inhibitory long-term depression (LTD) induced by an exogenous mu-opioid. We show that LTD at inhibitory synapses is dependent on downstream cAMP/PKA signaling, which differs between the mOFC and lOFC. Finally, we demonstrate that endogenous opioid release triggered via moderate physiological stimulation can induce LTD. Taken together, these results suggest that presynaptic mu-opioid stimulation of local PV+ interneurons induces a long-lasting suppression of GABAergic synaptic transmission, which depends on subregional differences in mu-opioid receptor coupling to the downstream cAMP/PKA intracellular cascade. These findings provide mechanistic insight into the opposing functional effects produced by mu-opioids within the OFC. Copy rights belong to original authors. Visit the link for more info