Meta-matching: a simple framework to translate phenotypic predictive models from big to small data

Published: Aug. 13, 2020, 4:01 p.m.

Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.08.10.245373v1?rss=1 Authors: He, T., An, L., Feng, J., Bzdok, D., Holmes, A. J., Eickhoff, S. B., Yeo, B. T. T. Abstract: There is significant interest in using brain imaging data to predict non-brain-imaging phenotypes in individual participants. However, most prediction studies are underpowered, relying on less than a few hundred participants, leading to low reliability and inflated prediction performance. Yet, small sample sizes are unavoidable when studying clinical populations or addressing focused neuroscience questions. Here, we propose a simple framework - "meta-matching" - to translate predictive models from large-scale datasets to new unseen non-brain-imaging phenotypes in boutique studies. The key observation is that many large-scale datasets collect a wide range inter-correlated phenotypic measures. Therefore, a unique phenotype from a boutique study likely correlates with (but is not the same as) some phenotypes in some large-scale datasets. Meta-matching exploits these correlations to boost prediction in the boutique study. We applied meta-matching to the problem of predicting non-brain-imaging phenotypes using resting-state functional connectivity (RSFC). Using the UK Biobank (N = 36,848), we demonstrated that meta-matching can boost the prediction of new phenotypes in small independent datasets by 100% to 400% in many scenarios. When considering relative prediction performance, meta-matching significantly improved phenotypic prediction even in samples with 10 participants. When considering absolute prediction performance, meta-matching significantly improved phenotypic prediction when there were least 50 participants. With a growing number of large-scale population-level datasets collecting an increasing number of phenotypic measures, our results represent a lower bound on the potential of meta-matching to elevate small-scale boutique studies. Copy rights belong to original authors. Visit the link for more info