Excitatory and inhibitory L23 neurons in mouse primary visual cortex are balanced in their input connectivity

Published: March 29, 2021, 1:03 a.m.

Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.04.21.053504v1?rss=1 Authors: Brown, A. P. Y., Cossell, L., Margrie, T. W. Abstract: Quantitatively characterising brain-wide connectivity of neural circuits is of vital importance in understanding the function of the mammalian cortex. Here we have designed an analytical approach to examine data from hierarchical segmentation ontologies, and applied it in the comparison of long-range presynaptic connectivity onto excitatory and inhibitory neurons in layer 2/3 (L2/3) of mouse primary visual cortex (V1). We find that long-range connections onto these two general cell classes in L2/3 originate from highly similar brain regions, and in similar proportions, when compared to input to layer 6. These anatomical data suggest that distal information received by excitatory and inhibitory networks is highly homogenous in L2/3. Copy rights belong to original authors. Visit the link for more info