Dependence of the stimulus-driven microsaccade rate signature on visual stimulus polarity

Published: May 25, 2020, 6:01 a.m.

Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.05.23.112417v1?rss=1 Authors: Malevich, T., Buonocore, A., Hafed, Z. M. Abstract: Microsaccades have a steady rate of occurrence during maintained gaze fixation, which gets transiently modulated by abrupt sensory stimuli. Such modulation, characterized by a rapid reduction in microsaccade frequency followed by a stronger rebound phase of high microsaccade rate, is often described as the microsaccadic rate signature, owing to its stereotyped nature. Here we investigated the impacts of stimulus polarity (luminance increments or luminance decrements relative to background luminance) and size on the microsaccadic rate signature. We presented brief visual flashes consisting of large or small white or black stimuli over an otherwise gray image background. Both large and small stimuli caused robust early microsaccadic inhibition, but only small ones caused a subsequent increase in microsaccade frequency above baseline microsaccade rate. Critically, small black stimuli were always associated with stronger modulations in microsaccade rate after stimulus onset than small white stimuli, particularly in the post-inhibition rebound phase of the microsaccadic rate signature. Because small stimuli were also associated with expected direction oscillations to and away from their locations of appearance, these stronger rate modulations in the rebound phase meant higher likelihoods of microsaccades opposite the black flash locations relative to the white flash locations. Our results demonstrate that the microsaccadic rate signature is sensitive to stimulus polarity, and they point to dissociable neural mechanisms underlying early microsaccadic inhibition after stimulus onset and later microsaccadic rate rebound at longer times thereafter. These results also demonstrate early access of oculomotor control circuitry to sensory representations, particularly for momentarily inhibiting saccade generation. Copy rights belong to original authors. Visit the link for more info